
How Healthy are Today’s Enterprise Networks?

Saikat Guha
Cornell University

saikat@cs.cornell.edu

Jaideep Chandrashekar, Nina Taft,
Konstantina Papagiannaki

Intel Research

first.last@intel.com

ABSTRACT

In this paper we take a look at the health of a typical enterprise
network via a new metric based on the fraction of useful flows gen-
erated by endhosts. Flows considered non-useful are those that ex-
plicitly fail or else do not elicit a response from the intended desti-
nation. Examining traces collected from a large number of mobile
hosts in an enterprise network, we find that about 34% of the flows
are not useful. Through our study that combines data analysis and
ongoing interactions with our IT department, we learn that these
non-useful flows arise from several causes. Our mobile hosts fre-
quently change environments, by either moving in and out of the
corporate environment, or by switching the point and means of at-
tachment to the corporate network. We find that many of the fail-
ures occur due to the hosts’ lack of environment awareness, which
results in attempts to discover services that are not present in all
environments. Other causes include misconfiguration, unnecessary
broadcast traffic, and excessive connection retries. Understanding
this ever present noise in endhost communication is important for
a variety of reasons including the fact that it complicates anomaly
detection design and wastes resources, the latter of which is par-
ticularly crucial for wireless and mobile environments. Finally, we
discuss possible means to design applications and services that can
significantly improve the health of the network.

Categories and Subject Descriptors

C.2.3 [Computer Systems Organization]: Computer Communi-
cation Networks—Network Operations; C.4 [Computer Systems

Organization]: Performance of Systems

General Terms

Measurement, Performance

Keywords

Network Health, Enterprise, Mobility, Environment Awareness

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’08, October 20–22, 2008, Vouliagmeni, Greece.
Copyright 2008 ACM 978­1­60558­334­1/08/10 ...$5.00.

1. INTRODUCTION
Enterprise networks today are walled gardens that sometimes ri-

val the complexity of the larger Internet. Enterprises can, and gen-
erally do, impose policies on the employee’s host machines to pro-
vide protection against rogue entities and to control network traf-
fic, for instance, stringent policies relating to software patching
and updating are enforced to keep hosts protected. Additionally,
in our own network, users are prohibited from installing a number
of blacklisted programs that are considered potentially detrimen-
tal to the network or a security risk. Other enterprises take more
draconian measures, locking down the hosts so that users cannot
install any new software after being configured. Given this level of
policing, one would expect the traffic generated by user endhosts to
be well behaved and easily analyzable. As we clearly demonstrate
in this paper, this is far from the case.

This disconnect exists for a number of reasons, starting from to-
day’s applications being very complex and hard to diagnose, cou-
pled with a highly distributed infrastructure exacerbated by shrink-
ing budgets of IT departments whose general motto may well be
“if it ain’t broke, don’t fix it”. The end-result is an ailing network
with poor diagnostic properties; small problems go unnoticed and
accumulate over time, sapping away network resources.

In this paper, we take an early look at traffic traces collected
from a large number of enterprise endhosts, specifically with an
eye toward quantifying, and understanding, traffic at the edge of
the enterprise network. One of the contributions of this paper is a
new metric which we take to capture the “health” of an enterprise
network from the perspective of the endhosts at the edge of the
enterprise. We define health as the fraction of observed flows that
are useful. A flow is deemed useful if it successfully contacts the
intended destination application; and non-useful if the connection
attempt times out, or the flow is made to destination applications
that are not alive or are unreachable. Clearly, non-useful flows are
symptomatic of misconfigurations, stale information, or some other
underlying malady.

Our definition of health is simplistic, nevertheless we found ex-
amining enterprise traffic through this lens of useful (and non-useful)
flows well suited to identifying suboptimal design in both applica-
tions and the architecture. A number of in-network mechanisms
ranging fromNATs and firewalls, to intrusion detection systems [14]
and application dependency extraction [4] operate at the granular-
ity of flows. Our definition of health captures, at least to the first
order, the noise such mechanisms must contend with.

Identifying and quantifying this ever present noise at the edge of
the enterprise network is important for several reasons. The first
stems from the difficulty of designing endhost based anomaly de-
tectors in the presence of unhealthy activity that may be benign.
Failed connections have been used as an indicator of anomalous

network behavior (e.g., scanning) [7]. An inherent assumption be-
hind such approaches is that most systems should be able to con-
tact their intended destination most of the time in well engineered
networks. We observed in our traces that a third of all outgoing
connections seem to fail. This high level of noise has the effect
of drowning out existing anomalies and other symptoms of poor
performance.

A secondary motivation for studying the health of the enterprise
edge is to understand the inherent inefficiencies. For instance, NATs
and firewalls may be consuming a third more resources than nec-
essary for keeping track of flows. And in wireless environments,
which are gradually becoming ubiquitous both inside the enterprise
and as a means of connecting to the enterprise from outside, failed
flows may be causing unnecessary channel contention [16] leading
to poor application layer performance, and increased costs under
metered pricing (e.g. on cellular networks).

Overall our contributions as are follows. First we analyze traf-
fic traces collected from a large population of enterprise endhosts
and quantify their health. We uncover that the level of health hov-
ers between 60 to 70% on an ongoing basis. We study the traffic
from various perspectives, including temporal, application based,
changes in environment, protocol behavior and failure types. We
find that most failures can be attributed to a small set of chatty ap-
plications, and thus feel optimistic about improving the health of of
the enterprise network. Second, we quantify the problem of lack of
environment awareness that we find to be a big contributor in our
analysis. Roughly 77% of observed failures occur within a minute
of the endhost switching between networks. Such behavior can
have grave consequences in terms of information leakage when en-
terprise laptops transition from inside to outside the corporate en-
vironment. Third, in our efforts to understand the causes behind
the high level of failures observed, we taxonomize our failures into
three groups: persistent connection retries, service discovery and
vulnerability testing. We believe that much of the service discovery
activities are potentially redundant and designing a more cohesive
network architecture provides opportunities to amortize the cost of
service discovery across multiple applications. Finally we suggest
some coping strategies and show that some of the waste can be
remedied in a straightforward fashion if awareness of the problem
were to be spread, while some requires more involved network ar-
chitecture improvements, and some simply requires acceptance as
part of normal enterprise traffic.

2. METHODOLOGY
Traditional network trace collection efforts have been “network

centric”—traces are gathered at routers or other aggregation points.
Inferring the cause of failures from such traces is problematic for
two reasons: first, addresses are fairly dynamic making tracking
users difficult, and more importantly, second, today’s enterprise
network is very mobile as users move in and out of the network.
Observing in-network traffic does not capture network transitions,
thus providing a very limited snapshot of endhosts’ behavior. Study-
ing health as it appears from the perspective of the endhost, requires
traces collected on the endhost itself.

During February of 2007, we collected data from over 350 vol-
unteering employees, spread across a number of sites. We collected
all packet headers and 150 bytes of the payload for all traffic at the
endhost across any active network interface. Of this set, 95% are
mobile hosts and utilize different interfaces at different times; the
remaining are desktops. For the mobile hosts, the traces include
activity when the host was outside the enterprise—at coffee shops,
home, airports, etc.

Each trace file is annotated with coarse grained user location:
internal, VPN and external, as well as a unique per-user identi-
fier. The traffic was captured with WinPcap that was restarted upon
any change in environment, address or interface. Importantly, all
the hosts that participated in the study ran an up-to-date version of
Windows XP SP2. In total, the traces yielded 31M flows.

Our analysis utilizes flow level data. The collected packet traces
were post processed with BRO [14] which performed the flow re-
assembly. In addition to tagging flows as being inbound or out-
bound from the endhost, BRO summarizes the “connection state”
of how the flow terminated. Unless mentioned otherwise, we con-
sider both inbound and outbound flows for our analysis. For all
the applications that we can explicitly mention in this paper, the
identification was done by consulting a “list of known ports” that is
maintained by the IT department.

We classify individual flows as being useful or non-useful. The
former class consists of flows that have been able to elicit a re-
sponse from the destination. This includes TCP flows that complete
the 3-way handshake and also UDP flows that see packets in both
directions, regardless of the number of bytes exchanged or how the
flow was (finally) terminated. Thus, we consider a TCP connection
as being useful even if it was closed by a RST (as long as the hand-
shake was first completed). Successful flows correspond to BRO
flags other than S0, REJ, RSTOS0 (see [1] for details) while
failed flows correspond to these three flags.

Classifying flows at the transport layer (versus at the application
layer) introduces artifacts: (i) flows that succeed at the transport
layer but fail at the application layer (e.g. an incorrect login on
a webpage) are considered useful in our classification; (ii) unidi-
rectional UDP flows, for instance, network level broadcasts which
elicit responses from a different address (e.g. NetBios), are tagged
as failed. We manually identified broadcast traffic and analyzed
the most egregious of applications for unidirectional flows; unless
mentioned otherwise, we omit such flows in our analysis since we
cannot determine if they succeeded. Correcting for flows that fail at
the application layer is considerably harder since we lack applica-
tion level knowledge. Even if one could attempt doing this for well
known applications (http, smtp, etc), many enterprise applications
are proprietary and create considerable hurdles for doing so.

As to the question of to what extent our results can be generalized
to other enterprise networks, we shared our findings with the IT de-
partment and relied on their expertise in network design and oper-
ations. A large fraction of failures are endemic to software that, we
learned, is typical in many enterprises, such as the Windows OS,
the anti-virus software, and the software-patching service. Also,
given the size and complexity of today’s enterprise networks, it is
reasonable to expect them to be designed and configured following
well tested “templates” and best common practices; for instance, a
DMZ, a VPN, different internal and external DNS namespaces, a
(small number of) homogeneous software stacks, and so on. We
consequently believe that our results apply, at least in part, to other
typical large enterprises that share the same culture of allowing em-
ployees semi-autonomous control over their laptops.

3. NETWORK HEALTH
Computed over the entire trace the health of our enterprise net-

work from the endhost’s perspective, defined earlier as the fraction
of successful flows, is 66%, suggesting that there is much room
for improvement. In this section we analyze the factors on which
health depends including time of day, user location and activity,
and applications.

 0

 20

 40

 60

 80

 100

02/03 02/10 02/17 02/24
 0

 50

 100

 150

H
e

a
lt
h

 (
%

)

F
lo

w
s
 (

th
o

u
s
a

n
d

s
)

Date

Health (hourly)
All Flows

Figure 1: Network health from the endhost perspective (frac-

tion of successful flows) is consistently low: figure shows health

(top) and total flow volume (bottom).

3.1 Temporal Effects
Figure 1 plots the average hourly network health during the course

of our trace and also the time series of flow volume seen. While
noisy, the health hovers around (a low) 66% despite very pronounced
diurnal and work-week patterns seen in the flow volume. We were
very surprised to learn that this low number does not really trans-
late to users complaining about poor performance. IT personnel
explained that most users are often unaware of what causes slug-
gish performance—network errors and bloated apps being two of
a very large number of probable causes—and consequently come
to passively expect mediocre performance or else feel that their
experience is “adequate for the purpose”. One redeeming obser-
vation, however, is that at least for web traffic (ports 80, 88, 443,
8080) there is a positive correlation between health and activity (not
shown in the figure); failure rates for these ports are lower during
working hours.

3.2 Effect of the Environment
We find the user’s environment has a noticeable impact on the

rate of failures: 34% of flows fail when users are connected directly
to the enterprise network (wired or wireless), compared to a stag-
gering 57% when users are logged in through the VPN. In contrast,
17% fail when users are outside and not connected to the VPN. We
believe that these numbers would be lower in other enterprise net-
works that have stricter “lockdown” policies for endhosts. In our
own network, users are free to install arbitrary applications1 and
consequently, the numbers we see are somewhat to be expected.

Looking only at outgoing connections, we see a very interesting
statistic: a significant fraction (77%) of these failures occur within
the first minute of the user acquiring a new IP address. The number
rises to 90% within the first four minutes. Of the flows failing in
the first minute, 87% are to destinations that the user had previously
successfully contacted a few minutes earlier (8 and a half minutes
in the median case). This is consistent with applications attempting
to reestablish connections broken by the user moving to a different
network environment, and failing to do so when the reachability of
the new network differs from that of the previous network2.

1There is however a (small) blacklist of applications, BitTorrent
among them, that users are not allowed to install.
2Transport layer migration of flows [8] is unlikely to solve the
problem as the endpoints in the two networks are unreachable as
a matter of policy.

Application From Internal From VPN

Anti-Virus Update 3191 33
Directory Service 2940 0
Unknown (port 5499) 2451 57
DNS 1760 97
Windows RPC 688 129
Web 633 255
Other 2029 215
Total 13692 786

Table 1: Number of unique instances where an application

leaked potentially sensitive IP address information when tran-

sitioning from internal and VPN environments to external net-

works.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

F
a

ile
d

 f
lo

w
s
 (

%
)

User (#)

CDF of all failures
Fraction failed per-user

Figure 2: The fraction of failed flows varies wildly across users,

with a small number responsible for a disproportionate num-

ber of failures.

This behavior of attempting to reestablish connections can leak
sensitive information in external networks. For instance, 1969 in-
ternal IP address and port pairs were leaked to external networks. In
addition, over 63K DNS requests failed in external environments,
and although we do not have the query payload, it is highly likely
that several of these requests leaked internal hostnames. The num-
bers are cause for concern as, in many cases, applications intended
for internal use do not authenticate the server because the network
is assumed to be trusted; consequently, attackers on external net-
works can masquerade as trusted internal services by spoofing IP
addresses or DNS responses, and collect user credentials or launch
man-in-the-middle attacks. Table 1 tabulates the number of unique
instances where an application leaked at least an internal IP address
and port information when transitioning from the internal network
or VPN to an external network.

3.3 Users and Applications
The fraction of failures varies widely for individual users as il-

lustrated in Figure 2. The figure plots users ranked in decreasing
order of the fraction of failed flows to/from their endhost; the CDF
(solid line) in the same figure tracks the contribution of specific
users to the total failures seen in the traces. Thus, the first user sees
84% failures personally, which accounts for about 6.7% of total
failures. As is clear in the figure, the top 1% users are responsi-
ble for a disproportionate 15% of all failures, which we attribute to
misconfigured applications as explained below.

Turning our attention now to applications we find that ten appli-
cations are responsible for 73% of all failures observed. In Figure 3,
we quantify the failure rates associated with these ten applications.

 0

 20

 40

 60

 80

 100

Soft.
Patch

HTTP AV
Update

DNS HTTPS Web
Proxy

Net-
BIOS

Perf.
Mon.

DB
Mon.

Music
Sharing

F
a

ile
d

 f
lo

w
s
 (

%
)

(Most Users) (Few Users)

Fraction failed per-application
CDF of all failures

Figure 3: Ten applications with highest failure rates. They in-

clude both popular applications (left) and applications used by

few users (right).

Note that there are two distinct classes of applications involved:
applications used by the entire population, such as infrastructure
apps, are grouped to the left, and applications installed by a very
small number of users (< 20 in our trace population) are grouped
to the right (these are applications explicitly installed by the users).
We believe both classes deserve discussion as the former reflects
inefficiencies experienced by the user population as a whole, and
the latter reflects applications that affect the network most severely.

The software patching service is the most egregious applica-
tion in the “popular” class. The high incidence of failures is at-
tributed to its unique service-discovery design: clients periodically
discover the closest patch distribution server by launching hop-
limited probes to all patch servers (numbering in the hundreds);
this results in a large number of flows, most of which fail before
reaching the (final) destination. Furthermore, this application is
environment agnostic and continues to behave aggressively when
outside the enterprise, resulting in even more failures. A lack of
environmental awareness is also to blame for the high failure rates
seen by the anti-virus application which is configured to periodi-
cally poll a server for updated signatures and policies.

Among the failing applications used by a small number of users
are two monitoring applications, and a music streaming applica-
tion. The first application monitors the performance of enterprise
servers (load, processes, alerts, etc.); when shown these failures the
operational IT group believed that the pattern was suggestive of an
incorrectly configured server that the endhost was trying to connect
to. The second application monitors the performance of database
servers and appears to be similarly misconfigured. The third is a
music streaming application that fails while attempting to punch
through firewalls and proxies by improperly masquerading as SSL
and VPN traffic. While these applications are isolated instances in
our environment, in general we believe that, misconfigurations and
policy violations by a small number of users are worth investigat-
ing as they can significantly affect the overall health of an enterprise
network.

4. TYPES OF FAILURES
In this section we introduce a taxonomy of failures which hint at

the underlying causes for the poor health that we observe. Building
on the taxonomy, we suggest a few incremental changes to appli-
cations that can serve to reduce the high incidence of failures.

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300

U
s
e
r

(#
)

02/03 02/10 02/17 02/24

Date

User #220

Figure 4: Detailed view of the software patching service. Notice

the persistent retries even during outages.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000 10000 100000 1e+06

C
D

F
 (

%
)

Time interval (s)

Retry interval
Outage duration

Figure 5: Applications retry far more frequently than neces-

sary during outages resulting in a large number of failures.

4.1 Persistent Retries
The majority of failures can be attributed to applications that per-

sistently initiate new flows to a host despite repeated failures. The
flows fail either because the application is misconfigured, or be-
cause the destination is temporarily unreachable, potentially due to
the user connecting from the wrong environment. Indeed the appli-
cation contributing 8% of all failures inside the enterprise network
is the misconfigured performance monitoring application mentioned
earlier.

Figure 4 presents a detailed look at outbound flows for the soft-
ware patching service. The figure plots failed flows for each user
as a function of time; the size of each circle is proportional to the
number flows failing in that hour with the largest circle representing
1583 failures. A horizontal slice corresponding to a particular user
is illustrated at the bottom for clarity. The figure exposes a service
outage on 2/17 and continuing degraded performance in the subse-
quent days, which we confirmed to be the result of significant added
load on the service during the noted days. At their peak, hosts re-
lentlessly initiated on average 11 failed flows per minute during the
one-day outage — a scenario where adaptive retry intervals would
have reduced the load on the service and the failures observed.

In Figure 5 we plot the CDF of outages, defined as the time be-
tween successful flows to the same destination, across all users

 0

 20

 40

 60

 80

 100

DHCP Microsoft
Services

Software
Patching

Anti-Virus
Update

F
ra

c
ti
o
n
 o

f
fl
o
w

s
 (

%
)

Broadcast Failed Successful

Figure 6: Multiple applications duplicate work at endhosts to

discover services, some introducingmore failures in the process

than others.

and applications (the bottom curve). The line is curiously linear
across six orders of magnitude. We also plot the CDF of retry inter-
vals (the top curve); the ten most failing applications listed in Fig-
ure 3 account for 82% of these persistent retries, with the software-
patching app accounting for the jump at 6s. The figure exposes
a fundamental disconnect between the need for retrying, and the
retry interval: 20% of outages are transient and disappear within
two seconds, however, beyond this, destinations experience what
we term “outage inertia” where the longer the outage has lasted,
the longer it is expected to continue to last. Retry intervals, on
the other hand, tend to be static, typically lasting less than 15 sec-
onds, which for long outages results in a large number of failures.
80% of retries are within 1 minute of a previous failure, whereas
the 80th percentile outage lasted 53 minutes. Dynamically picking
the interval before retrying a flow at the application level, perhaps
performing exponential backoff, would be one possible approach
to reducing the number of failures while still closely tracking the
outage duration.

4.2 Service Discovery
Applications use several ad hoc mechanisms for self configura-

tion and service discovery. In Figure 6 we plot the distribution of
traffic for four illustrative applications. The first is DHCP that at-
tempts to reach a previously cached server, failing which it relies on
broadcast to discover the configuration server. The second is Mi-
crosoft’s NetBIOS protocol, which uses broadcast to elect a leader
endhost that then assists other nearby endhosts in discovering re-
sources, potentially resulting in a flurry of failures and broadcast
traffic when the leader switches networks. The third is the software
patching service that relies heavily on periodic hop-limited probes,
and the fourth is the anti-virus service that periodically polls the
server. Each application, in essence, duplicates service discovery,
some more noisily than others, by operating independently rather
than amortizing their efforts by collaborating.

4.3 Vulnerability Testing
Vulnerability testing, where a host designated by IT scans for

vulnerabilities in endhosts on a routine basis, results in a class of
“useful” failures, something that we did not originally anticipate.
Such services are responsible for adding a uniform number of fail-
ures across a wide range of otherwise unused ports (e.g. telnet,
finger, ident). 8.5% of failures for flows inbound into the endhost

(4.8% of all failures in our enterprise) can be attributed to vulnera-
bility testing.

5. COPING STRATEGIES
Based on our experience in this paper, we identify two key areas

in which applications can be modified incrementally to yield signif-
icant savings. First, is retrying connections adaptively by backing
off exponentially at the application layer if an outage lasts for more
than a few seconds. Second is discovering services without intro-
ducing chatter.

More generally we believe there is an opportunity to amortize
polling and environmental awareness efforts across multiple appli-
cations by integrating this service into the network architecture. At
a minimum such a service must 1) allow an application to detect
the environment, 2) allow the application to discover infrastructure
services with application level constraints (e.g. closest reachable
server, low load), 3) do so securely without leaking sensitive in-
formation, and efficiently without extensive polling, and 4) be in-
tegrated with the network architecture so applications can rely on
the service always being present. We note that such applications do
exist today [9, 10], but exist independently and are not integrated
into the required framework.

At the same time, it would be useful to develop online appli-
cations that can differentiate between different kinds of problems
to assist IT in focusing their efforts. Problems such as miscon-
figurations, failures caused routinely by applications, and failures
caused by hosts transitioning between environments must be sepa-
rated from scanning and malicious activity requiring immediate IT
attention.

Altogether we believe that some kinds of waste can and should
be reduced, while other waste inherent in the system must be well-
documented to make the job of identifying real problems amidst
the noise far simpler than it is today.

6. RELATED WORK
Traditionally, the collection of traffic traces is done at network

aggregation points, backbone links or high volume servers [5, 13,
2] and these provide a brief window into the behavior of a very
large number of users. However, it is hard to construct a long term
behavioral description of individual endhosts from such traces, par-
ticularly so in networks where a significant population is mobile.
There are very few endhost traces available, understandably, given
the formidable legal and logistical barriers to collect such data. The
NETI@Home project is one such endhost based framework [15];
the goal is to use statistics, rather than packet traces, collected from
a large collection of endhosts to (centrally) identify end-to-end per-
formance issues. However, the information exported from the end-
host is very high level and of limited use. Our own trace is unique
in that we collect packet traces from a large population of (mobile)
endhosts that move between environments. In previous work, we
analyzed these traces and showed that there are significant differ-
ences in a number of traffic statistics and features for the same user,
as the endhost moves between environments [6]. In this paper, we
attempt to quantify the volume of non-useful connections and to
associate causes with them.

A large body of work addresses the problem of collecting, and
mining, traffic failures to understand failures, though the efforts
have focused on specific pieces of the end-to-end puzzle (e.g., web
failures in [12, 11]). The work in [12] is somewhat similar in spirit
to our own work: packet traces are collected from a number of in-
strumented endhosts which generate web page requests. It is shown
that a third of the failures arise from DNS errors, while the remain-

ing are almost all TCP connection failures, a large fraction of these
being server related. In contrast, our work in this paper does not
look at web traffic or any other specific applications, but across the
suite that are used on the endhosts in our enterprise (of which web
traffic is but a small part). While it is very likely that some of the
causes identified in [12] play some part in the failures that we ob-
serve, our results are broader in scope and the underlying causes we
identify have more to do with mobility of the endhost and vagaries
of how the endhosts (and applications therein) are configured.

The work that comes closest to what we present in this paper is
the study of TCP Resets undertaken by Arlitt andWilliamson [3]. A
year long campus traffic trace is analyzed and the authors show that
a large fraction of TCP connections involve a RST. In particular, the
results show that roughly 20-30% of the connections being non-

useful (in the sense that is described in this paper). However, the
trace that is analyzed misses all the traffic that stays local to the
campus and also does not record any UDP traffic. In contrast, our
own traces capture all the traffic from the endhosts, including UDP
and traffic that is local; we also expect traffic seen on a campus
network to be dramatically different in composition from that seen
in an enterprise. Furthermore, our goal is to understand root causes
at the endhost. The results in [3] indicate that a large fraction of
the offending flows are HTTP based, while in our analysis the non-
useful flows are distributed over a number of applications. More
recently, it was shown that many ISP’s inject TCP RST packets
into a client’s stream in order to deliberately throttle certain traffic
classes [17]. Since this behavior is not well documented or even
well understood, it is very hard to quantify how much of the non-
useful flows we can attribute to this behavior.

7. SUMMARY AND FUTUREWORK
The fact that many applications and network protocols have evolved

independently over the years, combined with shrinking IT staff and
budget has led to modern day enterprise networks that embrace
high levels of noise. In our study of endhost communication traf-
fic, we find that connection failures are regular, and in some cases,
are an integral part of an application. We believe that ignoring this
development is short-sighted because of increasing mobility and
increasing security threats. In some case, we believe that simple
fixes (such as backing off after repeated failures, and building en-
vironmental awareness into applications) are available. In other
cases, such as redundant service discovery activities, a more care-
ful redesign of network architecture and/or service sharing across
applications is needed.

In the future, we would like to use application layer information
to enhance our study. This avenue is not without its challenges, as
due to user privacy issues, we would have had far fewer volunteers
had we retained full packet payloads. We also plan to evaluate
our suggested coping strategies in terms of their impact on failure
reduction.

Acknowledgements

We would like to thank the Intel employees who participated in the
data collection effort, and Toby Kohlenberg, Stacy Purcell, David
Fong, Sanjay Rungta and Manish Dave for insights into enterprise
IT operations. We are grateful to our shepherd Joel Sommers, and
our anonymous reviewers for providing detailed and helpful feed-
back on this paper.

8. REFERENCES
[1] Bro connection summaries.

http://bro-ids.org/wiki/index.php/

Reference_Manual:_Analyzers_and_Events#

Connection_summaries.

[2] Internet traffic archive. http://ita.ee.lbl.gov/.

[3] ARLITT, M., AND WILLIAMSON, C. An analysis of tcp
reset behaviour on the internet. SIGCOMM Comput.

Commun. Rev. 35, 1 (2005), 37–44.

[4] BAHL, P., CHANDRA, R., GREENBERG, A., KANDULA,
S., MALTZ, D. A., AND ZHANG, M. Towards highly
reliable enterprise network services via inference of
multi-level dependencies. SIGCOMM Comput. Commun.

Rev. 37, 4 (2007), 13–24.

[5] FRALEIGH, C., MOON, S., LYLES, B., COTTON, C.,
KHAN, M., MOLL, D., ROCKELL, R., SEELY, T., AND

DIOT, S. Packet-level traffic measurements from the sprint ip
backbone. Network, IEEE 17, 6 (Nov.-Dec. 2003), 6–16.

[6] GIROIRE, F., CHANDRASHEKAR, J., IANNACCONE, G.,
PAPAGIANNAKI, K., SCHOOLER, E., AND TAFT, N. The
cubicle vs. the coffee shop: Behavioral modes in enterprise
end-users. In PAM (April 2008), Springer, Ed.

[7] JUNG, J., PAXSON, V., BERGER, A., AND

BALAKRISHNAN, H. Fast portscan detection using
sequential hypothesis testing. Security and Privacy, 2004.
Proceedings. 2004 IEEE Symposium on (2004), 211–225.

[8] MALTZ, D., AND BHAGWAT, P. Msocks: an architecture for
transport layer mobility. INFOCOM ’98. Seventeenth Annual

Joint Conference of the IEEE Computer and

Communications Societies. Proceedings. IEEE 3 (Mar-2 Apr
1998), 1037–1045 vol.3.

[9] Marco Polo for Mac OS.
http://www.symonds.id.au/marcopolo/.

[10] Centrix NetworkLocation.
http://centrix.ca/NetworkLocation/.

[11] PADMANABHAN, V., QIU, L., AND WANG, H.
Server-based inference of internet link lossiness. INFOCOM
2003 1 (30 March-3 April 2003), 145–155 vol.1.

[12] PADMANABHAN, V., RAMABHADRAN, S., AGARWAL, S.,
AND PADHYE, J. A study of end-to-end web access failures.
In CoNEXT (2006).

[13] PANG, R., ALLMAN, M., BENNETT, M., LEE, J., PAXSON,
V., AND TIERNEY, B. A first look at modern enterprise
traffic. In IMC’05 (Berkeley, CA, USA, 2005), USENIX
Association, pp. 2–2.

[14] PAXSON, V. Bro: A system for detecting network intruders
in real-time. Computer Networks 31, 23-24 (December
1999), 2435–2463.

[15] SIMPSON, C. R., AND RILEY, G. F. Neti@home: A
distributed approach to collecting end-to-end network
performance measurements. In Passive and Active

Measurements (2004), C. Barakat and I. Pratt, Eds.,
vol. 3015 of Lecture Notes in Computer Science, Springer,
pp. 168–174.

[16] STONE-GROSS, B., WILSON, C., ALMEROTH, K.,
BELDING, E., ZHENG, H., AND PAPAGIANNAKI, K.
Malware in ieee 802.11 wireless networks. PAM 2008 (April
2008).

[17] VUZE. First results from vuze network monitoring tool,
April 2008.

