
Discovering Related Data At Scale

Sagar Bharadwaj
Microsoft Research

t-sabhar@microsoft.com

Praveen Gupta
Microsoft Research

t-pravgu@microsoft.com

Ranjita Bhagwan
Microsoft Research

bhagwan@microsoft.com

Saikat Guha
Microsoft Research

saikat@microsoft.com

ABSTRACT

Analysts frequently require data from multiple sources for their
tasks, but finding these sources is challenging in exabyte-scale data
lakes. In this paper, we address this problem for our enterprise’s
data lake by using machine-learning to identify related data sources.
Leveraging queries made to the data lake over a month, we build a
relevance model that determines whether two columns across two
data streams are related or not. We then use the model to find rela-
tions at scale across tens of millions of column-pairs and thereafter
construct a data relationship graph in a scalable fashion, process-
ing a data lake that has 4.5 Petabytes of data in approximately
80 minutes. Using manually labeled datasets as ground-truth, we
show that our techniques show improvements of at least 23% when
compared to state-of-the-art methods.

PVLDB Reference Format:

Sagar Bharadwaj, Praveen Gupta, Ranjita Bhagwan, and Saikat Guha.
Discovering Related Data At Scale. PVLDB, 14(8): 1392 - 1400, 2021.

doi:10.14778/3457390.3457403

1 INTRODUCTION

Analysis tasks frequently need multiple data streams 1 spanning
different organizational groups within a data lake. For instance,
to create a łcollaboration graphž that links users who work with
each other, an analyst has to process several streams from multiple
collaboration platforms such as those providing email, video con-
ferencing and instant-messaging. Another example is a task that
determines the cause of service downtime and attributes it to either
faulty application-level components, faulty network components,
or malfunctioning hardware. This requires information from the
application’s various components or micro-services, the underlying
network, and its compute infrastructure.

Analysts find it extremely laborious to discover such related
sources of data in large data lakes, a task that takes themmany days
or even months. To make matters worse, data lakes are extremely
large and continuously growing. Microsoft’s data lake has roughly
doubled in size every year for the last decade. Also, unlike relational
databases where foreign-key relationships often capture related
data, in large unstructured data lakes, data in isolated organizational
silos seldom have inter-relationships that are explicitly defined.

To address this problem, previous work [9, 25] has proposed
several techniques to build łdata relationship graphs" that captures
related data sources. Building such a data graph boils down to

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 8 ISSN 2150-8097.
doi:10.14778/3457390.3457403

1A data stream is analogous to a table.

answering the question, łGiven a column in a data stream, what
are the related columns in other data streams in the data lake?".
These techniques make significant advances towards answering
this question. However they suffer from two shortcomings. First,
they require a single sweep over the entire data which, given the
exabyte-scale of our data lake, is prohibitive. Second, they propose
a fixed set of metrics and, to define relevance, a user of the data
graph has to craft ways of combining them. Ideally, the definition
of relevance should be specific to a data lake, and the data graph
construction algorithm should automatically determine how to
combine different metrics to give one formula for relevance.

While the immense scale of our data lake poses a daunting chal-
lenge, it also provides two unique opportunities. First, Cosmos,
Microsoft’s Data Lake, sees about one million jobs every day, each
of which may run multiple JOIN queries on the data. Such large
numbers enable us to treat queries as data. Using JOIN clauses they
hold, we build a relevance model that captures a definition of rele-
vance that is specific to the data lake. Second, Cosmos holds around
two billion data streams with twenty six billion data columns, yield-
ing an unprecedented amount of metadata. This allows us to treat
metadata as data and we use metadata-specific features to build
the relevance model. These features can capture related columns
with names such as machine and datacenterwhich data-based fea-
tures cannot. We also use data-based features inspired by previous-
work [9, 25] but only on samples of data for textual columns.

In this paper, we propose the Data Lake Navigator(DLN), a sys-
tem that builds and uses the relevance model to construct a data
graph for Cosmos.

Our paper makes the following novel contributions:

• We use machine-learning on queries made to data streams,
specifically JOIN clauses, to learn characteristics of related
data columns.
• We use two metadata-based features: embedding-enhanced

column-name similarity and column-name uniqueness. We
use data-based features as well, but to scale well, instead of
calculating them on full data, we base them on data samples.
• We show that a metadata-only approach to build data graphs
is indeed feasible, provides value, and is scalable. We also
show that data-based features do provide value, though more
marginal than expected.
• Weevaluate the relevancemodel for one large service, namely
Office365 Core. Additionally, we build a data graph using this
model for one of Microsoft’s internal services and evaluate,
using a manually labeled dataset, how well it detects useful
relations not seen before in any queries.

We evaluate a metadata-only relevance model, which learns
characteristics of related columns using only metadata-based fea-
tures, and an ensemble model which uses metadata features for
numeric columns, and both metadata and data-based features for
textual columns. Our results, quite counter-intuitively, show that

1392



the metadata-only model which uses only 2 features detects related
columns with 0.96 precision and 0.92 recall, whereas the ensemble
model improves this marginally to 0.97 and 0.95 respectively. Our
approach also scales well, as we show that we can process a large
data lake with 137,000 streams, 2.6 million columns, 30,754 unique
columns and 4.5 Petabytes of data in 80 minutes. Furthermore, we
compare our approach with three state-of-the-art techniques using
a manually-labeled dataset. We show that DLN shows an improve-
ment of at least 23% in F1-score over the state-of-the-art. We also
show through several examples that DLN learns many interesting
relationships which were not observed in any JOIN clauses.

2 BACKGROUND

In this section, we provide a brief overview of Cosmos, Microsoft’s
big-data processing system, and Scope, the language for processing
data on Cosmos. For a more in-depth description of Cosmos and
Scope refer to [4, 24].

Cosmos [4] stores multiple exabytes of mostly telemetry data
and is used daily for analytical jobs by every product team at Mi-
crosoft. Data in Cosmos is stored in either unstructured or struc-
tured streams. Unstructured streams, similar to files in a file-system,
are stored as opaque byte streams where Cosmos is oblivious to
any metadata. Structured streams, similar to tables in a database,
are stored as rows or columns with additional schema metadata.
Cosmos offers more efficient APIs for extracting data from struc-
tured streams. Unlike file-systems and databases, Cosmos data is
stored in very large pages, called extents, that can be 1Gb or more in
size. Extents are compressed and encoded for optimized sequential
access at the cost of random access.

The design of Cosmos has resulted in some best-practices when
dealing with log data and telemetry. Raw data, such as web-server
logs, is initially ingested and transformed into a structured stream.
Another script then enriches it by adding additional useful columns,
for example joiningwith other reference data and computed columns,
to produce a final (cooked) stream that other teams can consume.
The cooked stream is structured to enable efficient querying.

Data is processed and consumed using Scope [24] scripts. Scope
is a SQL dialect to filter, join, and select from data stored in Cosmos.
A user or service submits a Scope script to the Cosmos cluster,
which then compiles and executes the job, and if the job completes
successfully, persists the output back into Cosmos. The Scope com-
piler stores various compile-time artifacts including the submitted
script and generated query plan for debugging and later analysis.
In Section 4.1 we describe how we parse this generated query plan
to create ground-truth for our models.

Teams often provide multiple Views of their streams. A View,
similar to a (non-materialized) SQL view, generates a logical dataset
at query time by transforming an underlying physical dataset. This
ensures forward compatibility of downstream consumers to break-
ing schema changes in the underlying stream. A secondary reason
is to include computed columns or joins that are too expensive
to store separately. The Scope compiler inlines Views at compile
time such that the generated query plan includes joins and other
operators from Views and the calling script alike.

2.1 Scaling Challenges

Cosmos stores multiple exabytes of data in billions of unstructured
and structured streams. The streams have 13 columns on average,
though themaximum encountered column count exceeds 8000. Row
counts typically exceed tens of millions for cooked streams. Over 1
million Scope jobs are processed by the cluster on any given day.
These jobs are submitted by over 5000 users, and several thousand
service accounts.Given this scale, metadata access is significantly
faster than data access because of the following four reasons.

First, metadata requires reading only the metadata block from
disk, and in newer versions is stored in-memory in a distributed
service obviating any disk access. Thus a data discovery approach
that works in metadata-only mode will be significantly faster today
and more so in the future.

Second, data access in Cosmos is optimized for batch-processing
throughput and not interactive latency. As such, an implicit assump-
tion is that Scope scripts will access a small number of streams (few
tens) and typically consume rows sequentially. This assumption is
borne out in the vast majority of production workloads. However,
building a data graph entails a dramatically different access pattern,
one that spans a large number of streams. Cosmos does not sup-
port random sampling either. We do not envision Cosmos being
optimized for our workload and so pick a design point that trades
off some correctness for performance, i.e. we use metadata pre-
dominantly, and sample only the top 1000 rows as data. Section 4.2
further quantifies the costs that drove this decision.

Third, Views present an additional performance challenge. Since
Views are arbitrary pieces of Scope code, they may hide expensive
joins and other computations. For metadata-only approaches, Views
present no cost since the schema of the View is declared in the
View code and available at compile-time. Sampling data from a
View, however, requires materializing the entire view. Retrieving
even a single row from a view may involve a resource intensive
computation (e.g. aggregation).

Finally, in addition to performance implications, there are compli-
ance and audit implications for accessing data. Accessing data has a
significantly higher compliance workload than accessing metadata.
Given the ease of gathering metadata, we have given particular
attention to developing an accurate metadata-only model.

3 PROBLEM AND SOLUTION OVERVIEW

We address the problem of building a data graph for Microsoft’s
data lake. We break this down into two parts. First, we build a
relevance model that captures relevance between column-pairs in
the data lake. Second, we design scalable algorithms to build the
data graph using this relevance model.

3.1 Building the Relevance Model

Previous work[3, 25] has used several metrics for relevance, such
as number of overlapping values in columns, content similarity
and schema similarity. We believe that a more appropriate way to
capture relevance is to learn a combination of all such metrics, i.e.
it is better learned using examples of column-pairs that are already
known to be related. Fortunately, we have access to a large number
of Scope queries that have run on Cosmos in the past. We believe
that the JOIN clauses in these queries give us a rich dataset of related

1393



1394



1395



1396



5 BUILDING THE DATA GRAPH

Algorithm 1 Data graph construction algorithm

Metadata Crawling and Data Sampling

𝑛 ← List of columns to use as nodes of the graph
for Column 𝑐 ∈ 𝑛 do

Sample 𝑠 values in 𝑐
Fetch and store metadata for 𝑐

Create reverse indices

𝑋 ← Set of distinct data samples
for Sample 𝑥 ∈ 𝑋 do

Map 𝑥 to list of columns containing 𝑥

Prune and generate candidate column pairs

K-means clustering with column name embeddings
Generate all column pairs within each cluster
Generate all column pairs with overlap in sampled data

Calculate Features and Predict related column pairs

for Pair 𝑝 ∈ Candidate Pairs do

Calculate metadata and data features
Use the pre-trained classifier to classify based on selected thresh-

old of probability

In this section we describe the data graph construction algorithm,
which uses the relevance model as a building-block. The data graph
is built in three steps. The first step, feature extraction, is the same
as described in Section 4.2. In the pruning step, rather than consider
every column-pair which would be prohibitively expensive, we find
a reduced set of candidate column-pairs to input to the relevance
model. In the discovery step, we use the model to discover related
column-pairs and add edges to the data graph. Algorithm 1 summa-
rizes the process. In the worst case, the prediction algorithm needs
to be executed on O(𝑛2) pairs of columns. However, the pruning
steps significantly cut down the number of candidate pairs.

5.1 Pruning and Discovery

Weadopt a two-pronged approach to pruning column-pairs, metadata-
based and data-based pruning.

Metadata Clustering. We use k-means clustering on column
name embeddings to detect similar columns. We use a total of
40 clusters. Any two columns that lie in the same cluster form a
candidate column-pair for the data graph.We eliminate any column-
pair which span two different clusters.

Reverse index-based Pruning. There is extensive literature on
content-based pruning using top 𝑘 set similarity search [1, 6, 11, 25].
However, since we are working with samples, we do not have
the liberty to set a threshold on 𝑘 , as even a single intersection
may be valuable. The size of intersection between two samples is
not necessarily proportional to how related they are. For example,
samples from two columns representing IDs of the same entity may
have very little intersection because of its huge cardinality. Hence,
we form a reverse index on all the samples we collect, as the number
of unique values in the content is bound by number of samples ×
number of columns. For a given data value, the reverse index holds
all the columns that hold that value. From the reverse index, we
prune all column pairs that have no value in common. We consider
all other column-pairs as candidates for the data graph.

Table 1: Metrics evaluating the relevance model.

Metric metadata-only data-only ensemble

Precision 0.96 0.96 0.97
Recall 0.92 0.82 0.95
F1-Score 0.94 0.89 0.96

The set of candidate column-pairs is the union of the outputs of
both pruning techniques. Eliminating column pairs that have no
value in commonmay remove some related columns whose samples
do not have an intersection. We evaluate this on our datasets in
Section 6.2.2.

In the discovery phase, we input the column-pairs detected by
pruning to the relevance model and finally get a list of related
column-pairs, or edges in our data graph. Each edge is also anno-
tated by the relevance probability.

6 EVALUATION

We use the sklearn[18] toolkit in Python to learn the random
forest model and evaluate it. The data graph construction algorithm,
including pruning and discovery, is written in Scope and runs on
Cosmos. We import the relevance model into our Scope script using
support that Scope provides for Python UDOs. To achieve scale
and reduce latency, we have parallelized several steps of data graph
construction.

For querying the data graph, we use a model very similar to Au-
rum [3]. We have currently built a search engine-like interface that
takes as input a column name and outputs a ranked list of related
columns. We also provide a tree-map visualization which captures
the distance in folder hierarchy between the related columns.

Our evaluation answers questions in two categories. We first
evaluate Relevance Model Accuracy or howwell the relevance model
captures relationships in JOIN clauses.We next evaluateData Graph
Efficacy, where we evaluate the performance of our data graph con-
struction algorithm, and we measure how well the data graph cap-
tures relationships that have not been seen before in JOIN clauses.

6.1 Relevance Model Accuracy

Dataset:We use Office365 Core queries to evaluate the relevance
model. This data lake contains telemetry about service health, such
as CPU and I/O usage, and event logs from micro-services. We
obtained 4045 column-pairs from past joins seen in Office365 Core’s
query history as positive samples. To balance the dataset, we chose
4045 column-pairs at random as negative samples.

We evaluate the efficiency of the metadata-only, data-only and
the ensemble models by performing cross-validation: we use 80%
of JOIN clauses for training and 20% for testing. Note that this
evaluation uses only JOIN clauses, and does not consider column-
pairs that have so far not been observed in JOINs. We evaluate the
latter in Section 6.2.

Table 1 shows the precision, recall and F1-score for the metadata-
only, data-only and the ensemble models. The metadata-only model
performed surprisingly well with 0.96 precision and 0.92 recall,
while adding the data-based features for the textual columns in the
ensemble model improved the precision to 0.97 and recall to 0.95.
The data-only model for textual columns does not perform as well

1397



Table 2: Metric improvement with each added feature in the

metadata-only model.

Metric equality embedding +uniqueness

Precision 1.00 0.88 0.96
Recall 0.65 0.90 0.92
F1-Score 0.79 0.89 0.94

as the metadata-only model with recall 0.82 showing that metadata
features are absolutely necessary to solve this problem at scale.

To investigate the metadata-only model further, we explored
how each feature we use improves the metrics. We started with
a baseline model with only one feature, column name equality. In
other words, the baseline model says a column-pair is related if
and only if the column names are exactly the same. The results are
shown in Table 2. Column name equality is able to capture 65% of
all related column-pairs in our training dataset (recall=0.65). Not
surprisingly, the precision is very high. When we use column name
similarity, the recall shoots up to 0.90, but the precision drops to
0.88. Adding column name uniqueness brings the precision back
up to 0.96. These results show that there is value added by each
one of the metadata features. Note that to improve precision of the
system, we can just consider column name equality. Columns that
have exactly same names are related in most cases, resulting in
high precision. However, this would come at the cost of missing
interesting relationships between columns that do not share a name,
thereby reducing recall drastically.

We now provide some examples of column-pairs in our test-set
to explain the benefits of metadata features and data features.

TP in metadata-only, FN in data-only:When related column-pairs
contain randomly generated GUIDs, the columns have a very high
cardinality. Their samples may not have any common values. In
such examples, data features such as Jaccard similarity and Inclusion
dependence will be estimated as 0. However, in most such cases,
they have very similar column names which will be captured by
the column name similarity feature. For example, two columns
named user_id and CustomerId that are related is captured by
embedding-enhanced column name similarity.

TP in data-only, FN in metadata-only: Often, users use shortened
column nameswhichmetadata features do not capture. For example,
two columns named ManagerName and mngr may be related, but
only the data based features are able to capture the similarity.

TN in data-only, FP in metadata-only: Two columns with the
exact same name may refer to completely different formats of data.
For example, two columns both of which are named CommitId

may appear related, but they refer to commits made to two code
repositories and have different formats. Hence they refer to different
entities and are not related.

6.2 Data Graph Efficacy

In this section, we first evaluate the performance of algorithms that
we use to construct the data graph. Next, we evaluate how well the
data graph captures relations and compare our techniques to three
state-of-the-art data discovery techniques [3, 8, 25].

6.2.1 Performance. To evaluate performance of data graph con-
struction at scale, we use the data lake of the service that supports

Table 3: Performance of our implementation.

Stage Duration (s) Compute time (s)

Metadata crawling 800 49136

Data sampling 259 102525

Reverse index creation 44 44

Data-based Pruning 118 118

Metadata-based Pruning 32 32

Feature Extraction 3306 621888

Model Prediction 302 2147

Total 4861 775890

Table 4: DLN comparison with previous-work.

Metric
DLN

Ensemble
DLN

Metadata PMI
Aurum

Ensemble JOSIE

Precision 0.92 0.73 0.42 0.75 0.95

Recall 0.66 0.45 0.55 0.42 0.24
F1-Score 0.77 0.55 0.47 0.54 0.39
Time (sec) 70.40 3.89 2.81 26.08 121.54

DevOps within Microsoft. This data lake stores information of ev-
ery git repository Microsoft uses and associated code commit, build
and test information. It has 137,000 streams and a total of 2.6 million
columns. However, many of these streams contain similar infor-
mation and have the same schema, but are recorded on different
dates. We remove such repetitions and reduce our analysis down
to 30,754 unique columns adding up to 4.5 Petabytes in size.

30,754 columns in the evaluation dataset can lead to more than
450 million column-pairs. Our pruning algorithms reduced this to
approximately 40 million column-pairs. Using the relevance model
on these, we built a data graph with 12 million edges that had a
probability > 0.5. 2 million of these edges had a probability > 0.9.

Table 3 shows the time used to build the data graph for this
dataset. The duration gives the end-to-end time required for each
step, while the compute time gives the total time across all parallel
components for that step. We show that creating the data graph for
this data lake took only 81 minutes (4861s) and the total compute
time was 216 hours (775890s). This shows that our pruning and
discovery techniques do indeed scale well to large data lakes.

Here are some interesting examples of columns we found were
related which were not present in the training data. Two columns
named BugID and IssueID were marked as being related and both
columns referred to the ID of a software bug reported on a bug
tracking system. ChangedDate and ModifiedDate columns were
marked as related with probability 1 due to semantic similarity
captured by word vectors. CommitSHA and MergeSourceCommitID

were marked as being related with probability 1 as well.

6.2.2 Accuracy. We now evaluate DLN’s accuracy and compare
it with state-of-the-art techniques. Previous work on data discov-
ery focuses mostly on data based methods. JOSIE [25] finds the
top K sets with highest overlap for a given query set. Aurum [3],
which the Data Civilizer [9] uses, builds a linkage graph with edges
like content similarity, schema similarity and primary key-foreign
key relationships between columns. We compare DLN’s ensemble
model to both JOSIE and Aurum and the metadata-only model to a

1398



strawman model that uses Pointwise Mutual Information (PMI) [8]
to determine similarity between columns. We used the code avail-
able for both JOSIE and Aurum and ported it to run on our system
and data. We built the PMI-based strawman ourselves.
Dataset: To perform this evaluation, we selected 15 tables from
Office365 Core service, containing 437 columns. We asked domain
experts to manually label randomly chosen column-pairs from this
data. Of this set, they labeled 266 column-pairs as related. 173 of
these were textual column-pairs and the remaining 93 were numeric
column pairs. We use the top-1000 sample for each column as input
to JOSIE, Aurum, and DLN’s ensemble model.

For Aurum, we used schema similarity edges for numerical
columns and both schema and content similarity edges for textual
columns. For JOSIE, we selected the top 5 columns with maximum
overlapping values for each column, with a suitable threshold of
overlap. We selected all required thresholds so as to maximize the
F1-score for each approach.

To build a PMI-based baseline, we first tokenized all pairs of
column names seen in the training set as described in Section 6.1.
We count how many times a token-pair occurs across the two
column names in a column-pair. We do this for all token-pairs. We
use these counts to calculate PMI values for all token-pairs.

𝑃𝑀𝐼 (𝑥,𝑦) = log

(

𝑃 (𝑥,𝑦)

𝑃 (𝑥) ∗ 𝑃 (𝑦)

)

𝑃 (𝑥,𝑦) =
𝐶𝑜𝑢𝑛𝑡 𝑜 𝑓 𝑐𝑜−𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜 𝑓 (𝑥,𝑦)

∑

(𝑎,𝑏) 𝐶𝑜𝑢𝑛𝑡 𝑜 𝑓 𝑐𝑜−𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜 𝑓 (𝑎,𝑏)
and

𝑃 (𝑥) =
𝐶𝑜𝑢𝑛𝑡 𝑜 𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜 𝑓 𝑥

∑

𝑎 𝐶𝑜𝑢𝑛𝑡 𝑜 𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜 𝑓 𝑎

For a given column-pair, we generate all token-pairs, calculate the
average of PMI values for these pairs, and classify the pair as related
if this average is higher than a suitable threshold that we calculate
through a validation phase.

Table 4 shows a comparison of all techniques. We note that
the DLN’s metadata-only model (F1-Score=0.55) performs better
than all three previous techniques, and DLN’s ensemble model (F1-
Score=0.77) significantly out-performs them. We believe our use of
the relevance model not only captures various modes of similarity,
but it also captures several domain-specific relations which are
left undetected without the use of machine-learning. The table also
shows the total time taken to build the data graph in each approach.

Loss in recall due to pruning: Although the pruning methods
described in section 5 help us scale our approach to large data lakes,
they may remove related column-pairs, and cause a loss in recall.
We evaluated the loss in recall due to pruning. We first calculate
recall by generating all possible column-pairs in the dataset. Then,
we repeat the same experiment by using the pruned set of column
pairs as the candidate set. We see a decrease in recall from 0.68 to
0.66 due to pruning.

7 DISCUSSION AND FUTUREWORK

Our techniques depend upon JOIN clauses and queries being avail-
able to train the relevance model. However a relevance model
trained on one dataset can potentially be used to construct a data
graph for another dataset.

We believe this will be true if the datasets are similar, e.g. different
data lakes within the same organization. To evaluate the feasibility

of this approach across very different datasets, we built a generic
relevance model with the dataset described in Section 6.1 and used
it to construct a data graph for the public ChEMBL dataset [22]
which is a well known chemical database of bioactive molecules.
The ground-truth labels for this dataset are based off the PK-FK
pairs in the SQL data dump.

DLN obtains a precision of 0.21 and a recall of 0.86. While some
amount of loss in precision is expected given the different training
dataset, the low precision is also due to a ground truth that is
limited to known PK-FK pairs. For instance, DLN found the related
column-pair record_id and drug_record_id which was not in
the ground-truth. We find these results promising, and we leave a
further analysis of such cross-domain testing to future-work.

Previouswork has looked at discovering related data from slightly
dissimilar data [5, 14, 15, 21]. This is useful when transformations
are used before the JOIN clause. We intend to augment our tech-
niques using these as well.

8 RELATED WORK

Data Civilizer [9] discovers related data in a two-step process. It
first profiles available datasets to extract datatypes, cardinality
and a column signature to build a linkage graph with lightweight
relationships like content similarity and schema similarity. This is
used for pruning search spaces for calculating expensive heavier
relationships like inclusion dependency and structure similarity. It
also finds primary key-foreign key relationships using past work
on data based approaches for foreign key discovery [19]. Although
it finds relationships between data nodes using several similarity
measures as mentioned above, it needs a full pass on data columns
for calculating the heavy relationships.

JOSIE [25] is a top K overlap set similarity algorithm for finding
joinable columns. It uses an inverted dictionary which maps every
distinct token in a data lake to a list of columns containing it. This is
used to find columnswithmaximum intersectionswith the values of
a query column. Although the work discusses ways of minimizing
the cost of reading the dictionary to find these top K columns, it
still needs a pass over the entire data in the search space to create
this dictionary. It also ignores columns with numerical value as it
can lead to a large number of unique tokens in the datalake. This
can result in risk of losing interesting columns like id, key which
can be in numerical formats.

Several efforts use data-based similarity detection techniques [7,
16, 23, 26] for finding relations in a corpus of heterogeneous tables.
However, they require full scans of data which, as we have argued,
is not feasible at scale.

9 CONCLUSION

In this paper, we have described a methodology that uses machine-
learning to build a data graph that links related data in large data
lakes. Our evaluation shows that using lightweight metadata-level
features, we can build accurate models which can be used to find
several kinds of related data sets. We also show that our techniques
perform significantly better than the state-of-the-art techniques on
Microsoft’s data lake.

1399



REFERENCES
[1] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up

All Pairs Similarity Search. In Proceedings of the 16th International Conference on
World Wide Web (Banff, Alberta, Canada) (WWW ’07). Association for Comput-
ing Machinery, New York, NY, USA, 131ś140. https://doi.org/10.1145/1242572.
1242591

[2] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5ś32.
[3] R. Castro Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, andM. Stonebraker.

2018. Aurum: AData Discovery System. In 2018 IEEE 34th International Conference
on Data Engineering (ICDE). IEEE, Paris, France, 1001ś1012.

[4] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, Simon
Weaver, and Jingren Zhou. 2008. SCOPE: Easy and Efficient Parallel Processing
of Massive Data Sets. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1265ś1276. https:
//doi.org/10.14778/1454159.1454166

[5] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. 2003.
Robust and efficient fuzzy match for online data cleaning. In Proceedings of the
2003 ACM SIGMOD international conference on Management of data. Association
for Computing Machinery, New York, NY, United States, 313ś324.

[6] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. 2006. A primitive
operator for similarity joins in data cleaning. In 22nd International Conference on
Data Engineering (ICDE’06). IEEE, IEEE, Atlanta, GA, USA, 5ś5.

[7] P. H. Chia, D. Desfontaines, I. M. Perera, D. Simmons-Marengo, C. Li, W. Day,
Q. Wang, and M. Guevara. 2019. KHyperLogLog: Estimating Reidentifiability
and Joinability of Large Data at Scale. In 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, San Francisco, CA, USA, 350ś364.

[8] KennethWard Church and Patrick Hanks. 1990. Word Association Norms, Mutual
Information, and Lexicography. Computational Linguistics 16, 1 (1990), 22ś29.
https://www.aclweb.org/anthology/J90-1003

[9] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael
Stonebraker, Ahmed K. Elmagarmid, Ihab F. Ilyas, Samuel Madden, Mourad
Ouzzani, and Nan Tang. 2017. The Data Civilizer System. In CIDR 2017, 8th
Biennial Conference on Innovative Data Systems Research, Chaminade, CA, USA,
January 8-11, 2017, Online Proceedings. www.cidrdb.org, Chaminade, California.
http://cidrdb.org/cidr2017/papers/p44-deng-cidr17.pdf

[10] Vasiliki Efstathiou, Christos Chatzilenas, and Diomidis Spinellis. 2018. Word
Embeddings for the Software Engineering Domain. In Proceedings of the 15th
International Conference on Mining Software Repositories (Gothenburg, Sweden)
(MSR ’18). Association for Computing Machinery, New York, NY, USA, 38ś41.
https://doi.org/10.1145/3196398.3196448

[11] Fabian Fier, Nikolaus Augsten, Panagiotis Bouros, Ulf Leser, and Johann-
Christoph Freytag. 2018. Set similarity joins on mapreduce: An experimental
survey. Proceedings of the VLDB Endowment 11, 10 (2018), 1110ś1122.

[12] Yoav Freund and Robert E Schapire. 1997. A Decision-Theoretic Generalization
of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 55, 1
(Aug. 1997), 119ś139. https://doi.org/10.1006/jcss.1997.1504

[13] J. Friedman. 2001. Greedy function approximation: A gradient boosting machine.
Annals of Statistics 29 (2001), 1189ś1232.

[14] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukr-
ishnan, and Divesh Srivastava. 2001. Approximate String Joins in a Data-
base (Almost) for Free. In VLDB 2001, Proceedings of 27th International Con-
ference on Very Large Data Bases, September 11-14, 2001, Roma, Italy, Peter M. G.
Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri Ramamoha-
narao, and Richard T. Snodgrass (Eds.). Morgan Kaufmann, Roma, Italy, 491ś500.
http://www.vldb.org/conf/2001/P491.pdf

[15] Luis Gravano, Panagiotis G. Ipeirotis, Nick Koudas, and Divesh Srivastava. 2003.
Text Joins in an RDBMS for Web Data Integration. In Proceedings of the 12th
International Conference on World Wide Web (Budapest, Hungary) (WWW ’03).
Association for Computing Machinery, New York, NY, USA, 90ś101. https:
//doi.org/10.1145/775152.775166

[16] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data Lake Management: Challenges and Opportunities. Proc.
VLDB Endow. 12, 12 (Aug. 2019), 1986ś1989. https://doi.org/10.14778/3352063.
3352116

[17] Peter Norvig. 2009. Natural language corpus data. In Beautiful data. O’Reilly
Media, Boston, USA, Chapter 14, 219ś242.

[18] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825ś2830.

[19] Alexandra Rostin, Oliver Albrecht, Jana Bauckmann, Felix Naumann, and Ulf
Leser. 2009. A machine learning approach to foreign key discovery. InWebDB.
Providence, Rhode Island.

[20] A Shlosser. 1981. On estimation of the size of the dictionary of a long text on the
basis of a sample. Engineering Cybernetics 19, 1 (1981), 97ś102.

[21] Jiannan Wang, Guoliang Li, and Jianhua Fe. 2011. Fast-join: An efficient method
for fuzzy token matching based string similarity join. In 2011 IEEE 27th Interna-
tional Conference on Data Engineering. IEEE, IEEE, Hannover, Germany, 458ś469.

[22] Egon L Willighagen, Andra Waagmeester, Ola Spjuth, Peter Ansell, Antony J
Williams, Valery Tkachenko, Janna Hastings, Bin Chen, and David J Wild. 2013.
The ChEMBL database as linked open data. Journal of cheminformatics 5, 1 (2013),
1ś12.

[23] Yi Zhang and Zachary G. Ives. 2019. Juneau: Data Lake Management for Jupyter.
Proc. VLDB Endow. 12, 12 (Aug. 2019), 1902ś1905. https://doi.org/10.14778/
3352063.3352095

[24] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Ake Larson, Ronnie Chaiken,
and Darren Shakib. 2012. SCOPE: Parallel Databases Meet MapReduce. The VLDB
Journal 21, 5 (Oct. 2012), 611ś636. https://doi.org/10.1007/s00778-012-0280-z

[25] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In Pro-
ceedings of the 2019 International Conference on Management of Data (Amsterdam,
Netherlands) (SIGMOD ’19). Association for Computing Machinery, New York,
NY, USA, 847ś864. https://doi.org/10.1145/3299869.3300065

[26] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH
Ensemble: Internet-Scale Domain Search. Proc. VLDB Endow. 9, 12 (Aug. 2016),
1185ś1196. https://doi.org/10.14778/2994509.2994534

1400


