Towards Detecting Anomalous User Behavior in Online Social Networks

Bimal Viswanath

M. Ahmad Bashir, Mark Crovella, Saikat Guha, Krishna Gummadi, Balachander Krishnamurthy, Alan Mislove

Usenix Security’14
Service abuse in social networks today

Several black-market services are available today to
 Manipulate content ratings
 Manipulate influence/popularity of a user

One can buy likes for their Facebook page on the black-market

Quality of traffic on social ad platforms is also questionable
Our goal

Detect misbehaving identities in the service
Suspend the misbehaving user or nullify their actions
Existing approaches for defense

```
<table>
<thead>
<tr>
<th>Attack</th>
<th>Initial detection</th>
<th>Defend</th>
<th>Detec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin attack</td>
<td></td>
<td>Defender responds</td>
<td></td>
</tr>
<tr>
<td>Attacker controls</td>
<td></td>
<td>Defender controls</td>
<td></td>
</tr>
<tr>
<td>Mutate</td>
<td></td>
<td>Attacker detects</td>
<td></td>
</tr>
</tbody>
</table>
```

“Facebook Immune System”, SNS’10
Existing approaches for defense

Begin attack

Attack

Initial detection

Detect

Attacker controls

Defender responds

Defender controls

Attacker detects

"Facebook Immune System", SNS’10
Existing approaches for defense

Begin attack → Attack → Initial detection

Defender controls

Detect → Defender responds

Mutate → Attacker detects

"Facebook Immune System", SNS’10
Existing approaches for defense

- Attack
- Begin attack
- Mutate
- "Facebook Immune System", SNS’10

Attacker controls:
- Attack
- Initial detection

Defender controls:
- Responds
- Defense

Detect:
- Detects
Existing approaches for defense

- **Attack**: Begin attack
- **Defender** controls
- **Defender responds**
- **Defend**
- **Mutate**
- **Attacker** detects
- **Detect**
- **Initial detection**

"Facebook Immune System", SNS’10
Limitations of existing approaches

Relies on detecting specific known patterns of misbehavior

Attackers mutate and use diverse strategies today:
 - Fake accounts are created for Sybil attacks
 - Some real users tend to collude to boost each other’s popularity
 - Real user accounts are compromised for better social reach

Existing approaches are vulnerable against an adaptive attacker
Idea: Use unsupervised anomaly detection
Our approach at a high level

We use an unsupervised anomaly detection technique

We build an Anomaly classifier
 That learns normal patterns of behavior
 Any behavior that deviates significantly from normal is anomalous

For learning phase:
 Input only includes behavior of unlabeled random sample of users

This approach has the potential to catch diverse attack strategies
An approach to identify anomalous user behavior

Detect Like spammers on Facebook
 Our approach detects diverse attack strategies
 Using Sybil accounts
 Compromised accounts
 Colluding accounts

Detect fraudulent clicks in the Facebook social ad platform
 Observe that a significant fraction of clicks look anomalous
Methodology
Learning normal patterns of behavior

For our approach to work:
 We have to learn normal patterns of user behavior

If user behavior is too noisy - i.e., everyone behaves very differently
 Attacker can potentially hide in the noise and evade detection

We want to see if there are a few patterns of behavior that are
dominant among normal users
Why would this work against attackers?

To evade detection, attacker would have to behave normally
Will have to limit himself to the few patterns of normal behavior
This constrains the attacker and bounds the scale of the attack

<table>
<thead>
<tr>
<th>Spatial feature: Distribution of #page categories liked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Football</td>
</tr>
<tr>
<td>Cricket</td>
</tr>
<tr>
<td>Photography</td>
</tr>
</tbody>
</table>

Normal user

<table>
<thead>
<tr>
<th>Anomalous user</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body building</td>
</tr>
<tr>
<td>Dolls</td>
</tr>
<tr>
<td>Rock climbing</td>
</tr>
<tr>
<td>Beauty care</td>
</tr>
<tr>
<td>Medicine</td>
</tr>
<tr>
<td>Motorcycle</td>
</tr>
<tr>
<td>Cartoons</td>
</tr>
</tbody>
</table>
Challenges in modeling behavior

How do you model complex user behavior in social networks?

User behavior is high dimensional
 Spatial feature: Behavior defined as distribution of topic categories
 Temporal feature: Time-series of number of likes per day

User behavior can change over time

User behavior can be noisy
Anomaly detection using PCA

Number of likes on topic 1

Number of likes on topic 2
Anomaly detection using PCA

- Number of likes on topic 1
- Number of likes on topic 2
Anomaly detection using PCA

Number of likes on topic 1 vs Number of likes on topic 2

Normal users

Anomalous user
Anomaly detection using PCA

Number of likes on topic 1

Number of likes on topic 2
Anomaly detection using PCA

Number of likes on topic 1

Number of likes on topic 2

PC-1
(Normal space)
Anomaly detection using PCA

Number of likes on topic 1

PC-1 (Normal space)

Number of likes on topic 2

PC-2 (Residual space)
Anomaly detection using PCA

If $y_{\text{res}} > \text{Threshold}$, user is anomalous
Capturing normal behavior patterns

Are there a few patterns of behavior that are dominant?
 Can be answered by looking at variance captured by each PC
We apply PCA to user behavior defined over 224 page topics
Capturing normal behavior patterns

Are there a few patterns of behavior that are dominant?
Can be answered by looking at variance captured by each PC
We apply PCA to user behavior defined over 224 page topics
Capturing normal behavior patterns

Are there a few patterns of behavior that are dominant?
Can be answered by looking at variance captured by each PC
We apply PCA to user behavior defined over 224 page topics
Capturing normal behavior patterns

Are there a few patterns of behavior that are dominant?
Can be answered by looking at variance captured by each PC
We apply PCA to user behavior defined over 224 page topics

Top 5 components account for more than 85% of data variance
Each of the remaining components capture very small variance
Capturing normal behavior patterns

Are there a few patterns of behavior that are dominant? Can be answered by looking at variance captured by each PC. We apply PCA to user behavior defined over 224 page topics.

We observe such patterns in other social networks too.

Top 5 components account for more than 85% of data variance.

Each of the remaining components capture very small variance.
Evaluation: Detecting Like spammers on Facebook
Data collected

Training data:
Random users: 12k random users sampled from Facebook

Testing data:

<table>
<thead>
<tr>
<th>Identity type</th>
<th>#Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-market</td>
<td>3.2k</td>
</tr>
<tr>
<td>Compromised</td>
<td>1k</td>
</tr>
<tr>
<td>Colluding</td>
<td>900</td>
</tr>
<tr>
<td>Normal</td>
<td>1.2k</td>
</tr>
</tbody>
</table>
Detected anomalous behavior

Estimating threshold for anomalous behavior
Find threshold such that 3% of random users are flagged
Facebook reported in 2013 that 3% of all users are suspicious

We observe a false positive rate of 3.3%

<table>
<thead>
<tr>
<th>Identity type</th>
<th>Likes flagged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-market</td>
<td>99%</td>
</tr>
<tr>
<td>Compromised</td>
<td>64%</td>
</tr>
<tr>
<td>Colluding</td>
<td>92%</td>
</tr>
</tbody>
</table>
Evaluation: Detecting click-spam on Facebook ads
Click-spam on Facebook

Advertisers lose money on spam clicks
 They might lose confidence in the advertising platform
 Affects the sustainability of the social networking service

Preliminary experiment to understand click-spam in Facebook ads
 Set up bluff ad and a real ad targeting users in USA
 Heavily instrumented the landing page to capture user activity

Both bluff and real ad performed nearly identically
 e.g., similar number of clicks and similar levels of activity on landing page
Experiment to catch anomalous clicks

Set up ad to get likes to our page

Find identity of user who liked our page
Click-spam identified

We set up 10 ad campaigns targeting 7 countries
USA, UK, Australia, Egypt, Philippines, Malaysia, India

1,867/2,767 (67%) users who click on ads look anomalous
8 out of 10 campaigns have a majority of clicks that look anomalous
US, UK campaigns have more than 39% anomalous clicks
Corroboration by Facebook

We analyzed the state of flagged users and their likes in June 2014

Users:
Most of the flagged users still exist
92% of black-market and 93% of ad users are still alive

Likes:
More than 85% of all likes by ad users were removed after 4 months
Confirms our findings of click-spam

But a lot of likes by known misbehaving users still exist
Over 48% of likes by black-market users still exist after 10 months
Conclusion

Service abuse is a huge problem in social networks today
Attackers use diverse strategies and also tend to adapt

We propose an unsupervised anomaly detection scheme
PCA serves as a nice tool to model behavior and detect anomalous ones

We evaluate our technique on extensive ground-truth data of anomalous behavior

We apply our approach to detect click-spam in a social ad platform